Geometri med GeoGebra, skolår 7 – 9.

Biennetten i Malmö lördagen den 9 mars 2013.

Programmet GeoGebra hittar du på adress: http://www.geogebra.org/download

Exempel 1 – Area och omkrets av en triangel

Starta GeoGebra och välj perspektiv Geometri. Dölj axlar, men visa rutnät.

Välj också Inställningar – Namn på objekt – Inga nya objekt och spara denna inställning.

- Sätt ut tre **punkter**.
- Sammanbind punkterna till en **polygon**. **Redigera** triangeln, så att den får tjockare konturlinjer och starkare färg.
- Skriv ut triangelns **area** och **omkrets** under figuren. Ändra ev. antalet decimaler i inställningar.

Ändra form på triangeln och se hur area och omkrets förändras.

Exempel 2 - Vinkelsumman i en triangel

Välj Nytt fönster. Dölj axlar och rutnät, men visa algebrafönstret och inmatningsfältet.

- Rita en godtycklig triangel ABC.
- Mät storleken på vinklarna A, B och C genom att använda Verktyg för mätning Vinkel.
- Beräkna vinkelsumman i inmatningsfältet och visa värdet i en **textruta**. Bestäm själv med vilken noggrannhet vinklarnas storlek ska anges.

Ändra form på triangeln genom att dra i ett av hörnen och "upptäck" att vinkelsumman inte ändras.

Exempel 3 – Olika trianglar med samma bas och höjd

Välj Nytt fönster. Dölj axlar och rutnät.

- Rita ett segment mellan två punkter, AB. Segmentet utgör basen i trianglarna.
- Markera en tredje punkt, C, och rita en triangeln ABC.
- Rita en **linje** genom punkt C, **parallell** med segmentet AB, och markera en **punkt**, D, på denna linje. **Dölj** sedan "hjälplinjen".
- Rita triangeln ABD. Redigera de två trianglarna
- Skriv ut båda trianglarnas **area** och **omkrets** under figuren.

Flytta punkt D och "upptäck" hur area respektive omkrets förändras.

Exempel 4 – Triangel i cirkel.

Välj Nytt fönster. Dölj axlar och rutnät, men visa algebrafönstret.

- Rita en linje genom två punkter.
- Rita en cirkel definierad med dessa punkter som medelpunkt och periferipunkt.
- Markera skärningspunkterna mellan cirkeln och linjen. Dölj sedan "hjälplinjen".
- Sätt ut ytterligare en **punkt** på cirkelns periferi och sammanbind de tre punkterna på cirkelns rand med **polygon**verktyget.

Ändra form på triangeln och undersök vilka egenskaper triangeln har.

Exempel 5 – Konstruktion av triangel med tre givna sidor.

Välj Nytt fönster. Dölj axlar och rutnät, men visa algebrafönstret.

- Lägg in tre glidare. Glidarnas värde anger längden av de tre triangelsidorna, så det kan vara lämpligt att välja intervallet 0 – 10 för samtliga glidare.
- Rita **segment med given längd** och ange beteckningen för en av glidarna som den givna längden.
- Rita två **cirklar definierade av medelpunkt och radie** (medelpunkter i segmentets ändpunkter och värdet på glidare b respektive glidare c som radier).
- Markera skärningspunkterna mellan de två cirklarna. Dölj sedan "hjälpcirklarna".
- Sammanbind en av skärningspunkterna och det ursprungliga segmentet rand med **polygon**verktyget till en triangel med de tre glidarvärdena som sidlängder.
- Skriv ut **längden** på de tre triangelsidorna.

Ändra form på triangeln och "upptäck" triangelolikheten.

$Exempel \ 6-Py thag or as `sats$

Välj Nytt fönster. Dölj axlar och rutnät, men visa algebrafönstret.

- Rita en **linje** genom två punkter.
- Rita en **vinkelrät linje** genom en av de två punkterna.
- Markera en tredje **punkt** på den vinkelräta linjen och dölj de båda "hjälplinjerna".
- Sammanbind de tre punkterna till en **triangel** och **mät** triangelns största **vinkel**.
- Rita **kvadrater** på var och en av triangelns sidor.
- Skriv ut kvadraterna **areor.**

Ändra form på triangeln och "upptäck" Pythagoras sats.

Extrauppgift: Rita ut höjden mot hypotenusan.

Exempel 7 – Konstruera en regelbunden sexhörning.

Välj Nytt fönster. Dölj axlar och rutnät.

- Sätt ut två **punkter**, A respektive B.
- Rita en **cirkel** med medelpunkt i A och med B på periferin.
- Rita en ny **cirkel** med B som medelpunkt och A som periferipunkt.
- Markera skärningspunkterna mellan cirklarna.
- Rita nya cirklar med dessa skärningspunkter som medelpunkter och A som periferipunkt.
- Markera skärningspunkter, rita nya cirklar osv. till du har sex periferipunkter.
- Sammanbind dessa med **polygon**verktyget.
- Redigera, så att konstruktionscirklarna ritas med en tunnare, streckad linje.

Kontrollera vilka punkter du kan flytta och på vilket sätt då sexhörningens utseende ändras.

Visa Navigationsfältet för konstruktionssteg och spela upp konstruktionen.

Exempel 8 – Kvadrat med glidarvärde som sidlängd

Välj Nytt fönster. Dölj axlar, men visa rutnät.

- Lägg in en **glidare** (intervall: 1 10, steglängd: 1).
- Rita ett **segment** som har glidarvärdets längd.
- Rita en **regelbunden polygon** med fyra hörn och segmentet som sida.
- Skriv ut polygonens area och längden av sidan.

Ändra storlek på fyrhörningen genom att dra i glidaren. Du kan också **animera glidaren**.

För att kopiera en bild från GeoGebra till word / ppp gör du så här:

- Markera den del av GeoGebrafönstret, som du vill kopiera och klistra in i worddokumentet.
- Välj Redigera Ritområde till urklipp.
- Klicka i worddokumentet, där du vill placera bilden och välj Klistra in. Bilden kan beskäras och redigeras på vanligt sätt.

För att lägga in en bild med <u>en</u> glidare från GeoGebra till ppp som GIF gör du så här:

- Välj Exportera Graphics View as Animated GIF... och spara bilden i gif-format i valfri katalog.
- Klicka i ppp, där du vill lägga in bilden och välj Infoga bild. Ändra ev. storlek på bilden.